On properties of Continuous-Time Random Walks with Non-Poissonian jump-times
نویسندگان
چکیده
The usual development of the continuous-time random walk (CTRW) proceeds by assuming that the present is one of the jumping times. Under this restrictive assumption integral equations for the propagator and mean escape times have been derived. We generalize these results to the case when the present is an arbitrary time by recourse to renewal theory. The case of Erlang distributed times is analyzed in detail. Several concrete examples are considered.
منابع مشابه
ar X iv : 0 80 9 . 16 12 v 1 [ m at h . PR ] 9 S ep 2 00 8 CORRELATED CONTINUOUS TIME RANDOM WALKS
Continuous time random walks impose a random waiting time before each particle jump. Scaling limits of heavy tailed continuous time random walks are governed by fractional evolution equations. Space-fractional derivatives describe heavy tailed jumps, and the time-fractional version codes heavy tailed waiting times. This paper develops scaling limits and governing equations in the case of correl...
متن کاملCorrelated continuous time random walks
Continuous time random walks impose a random waiting time before each particle jump. Scaling limits of heavy-tailed continuous time random walks are governed by fractional evolution equations. Space-fractional derivatives describe heavy-tailed jumps, and the time-fractional version codes heavy-tailedwaiting times. This paper develops scaling limits and governing equations in the case of correla...
متن کاملGeneralized Continuous - Time Random Walks ( Ctrw ) , Subordination by Hitting times and Fractional Dynamics ∗
Functional limit theorem for continuous-time random walks (CTRW) are found in general case of dependent waiting times and jump sizes that are also position dependent. The limiting anomalous diffusion is described in terms of fractional dynamics. Probabilistic interpretation of generalized fractional evolution is given in terms of the random time change (subordination) by means of hitting times ...
متن کاملClustered continuous-time random walks: diffusion and relaxation consequences.
We present a class of continuous-time random walks (CTRWs), in which random jumps are separated by random waiting times. The novel feature of these CTRWs is that the jumps are clustered. This introduces a coupled effect, with longer waiting times separating larger jump clusters. We show that the CTRW scaling limits are time-changed processes. Their densities solve two different fractional diffu...
متن کاملNon-Backtracking Centrality Based Random Walk on Networks
Random walks are a fundamental tool for analyzing realistic complex networked systems and implementing randomized algorithms to solve diverse problems such as searching and sampling. For many real applications, their actual effect and convenience depend on the properties (e.g. stationary distribution and hitting time) of random walks, with biased random walks often outperforming traditional unb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008